Relationship 1:1 (Get on both sides)

Relationship 1:1 (Get on one side)

Tree Color Dog Bone
Use local interfaces Use local interfaces

o e Jox

* @ejb.interface-method view-type = "local" * @ejb.interface-method view-type = "local" * @ejb.interface-method view-type = "local"

* @return * @return * @return

! ! */

public abstract ColorLocal getColor();
[

* @ejb.interface-method view-type = "local"

* @param colorLocal
*/

public abstract void setColor(ColorLocal colorLocal);
Define in the javaDoc for the getter the relation with same
name on both sides and specify role-name

[

* @ejb.interface-method view-type = "local"

* @ejb.relation name = "tree-color"

* role-name = "tree has color”

* @return

!

public abstract ColorLocal getColor();

Add the jboss.relation tag only on one side
[
* @ejb.interface-method view-type = "local"
* @ejb.relation name = "tree-color"
* role-name = "tree has color"
* @jboss.relation related-pk-field = "id"
* fk-column = "house_id"
* fk-constraint = "true"

Cascade delete will delete tree when color is removed

* @ejb.relation name = "tree-color"
* role-name = "tree has color"
* cascade-delete = "yes"

public abstract TreeLocal getTree();

e
* @ejb.interface-method view-type = "local"

* @param treelLocal
*/
public abstract void setTree(TreeLocal treeLocal);

[
* @ejb.interface-method view-type = "local"
* @ejb.relation name = "tree-color"

* role-name = "color of tree"

* @return
*
public abstract TreeLocal getTree();
Add the jboss.relation tag only on one side
[
* @ejb.interface-method view-type = "local"
* @ejb.relation name = "tree-color"
* role-name = "color of tree"
* @jboss.relation related-pk-field = "id"
* fk-column = "tree_id"
* fk-constraint = "true"

Cascade delete will delete color when tree is removed

* @ejb.relation name = "tree-color"
* role-name = "color of tree"
* cascade-delete = "yes"

public abstract BoneLocal getBoneLocal();

o
* @ejb.interface-method view-type = "local"
* @param boneLocal
*/
public abstract void setBoneLocal(BoneLocal
boneLocal);
Define in the javaDoc for the getter the relation with
same name on one side only
Jox
* @ejb.interface-method view-type = "local"
* @ejb.relation name = "dog-bone"
* role-name = "dog has bone"
* target-ejb = "Bone"
* target-role-name = "bone of dog"
*/
public abstract BoneLocal getBoneLocal();
Add the jboss.relation tag
[
* @ejb.interface-method view-type = "local"
* @ejb.relation name = "dog-bone"
* role-name = "dog has bone"
* target-ejb = "Bone"
* target-role-name = "bone of dog"
* @jboss.relation related-pk-field = "id"
* fk-column = "bone_id"
* fk-constraint = "true"

or the other way around
e
* @ejb.interface-method view-type = "local"
* @ejb.relation name = "dog-bone"
* role-name = "dog has bone"
* target-ejb = "Bone"
* target-role-name = "bone of dog"
* @jboss.target-relation related-pk-field = "id"
* fk-column = "dog_id"
* fk-constraint = "true"
Cascade delete will delete dog when bone is removed
* @ejb.relation name = "dog-bone"
* role-name = "dog has bone"
* cascade-delete = "yes"
* target-ejb = "Bone"
* target-role-name = "bone of dog"

Target cascade delete will delete the bone when the dog
is removed

* @ejb.relation name = "dog-bone"

* role-name = "dog has bone"

* cascade-delete = "yes"

* target-ejb = "Bone"

* target-role-name = "bone of dog"

* target-cascade-delete = "yes"

Relationship 1:n (Get on both sides)

Relationship 1:n (Get only one the many-side)

Relationship 1:n (Get only one the 1-side)

Fish
Use a Collection on the many side

e
* @ejb.interface-method view-type = "local"
* @return
Y/

public abstract Collection getFingers();

e
* @ejb.interface-method view-type = "local"
* @param fingers
Y/

public abstract void setFingers(Collection fingers);

Define in the javaDoc for the getter, the relation with
same name on both sides
/o
* @ejb.interface-method view-type = "local"
* @ejb.relation name = "fish-fingers"
* role-name = "fish becomes fingers"
* @return
Y/

public abstract Collection getFingers();

No cascade delete here!!! Only possible when the
otherside is a 1-side not a many-side.

Finger
Use local interfaces

e
* @ejb.interface-method view-type = "local”
*@return
4

public abstract FishLocal getFish();

e
* @ejb.interface-method view-type = "local"
* @param fishLocal
Y/

public abstract void setFish(FishLocal fishLocal);

Define in the javaDoc for the getter, the relation
with same name on both sides
e
* @ejb.interface-method view-type = "local”
* @ejb.relation name = "fish-fingers"
* role-name = "fingers from fish"
* @return
Y

public abstract FishLocal getFish();

Add the jboss.relation tag on the many side!!!
Jboss target-relation is not working!
[
* @ejb.interface-method view-type = "local"
* @ejb.relation name = "fish-fingers"
* role-name = "fingers from fish"
* @jboss.relation related-pk-field = "id"
*_fk-column = "fish_id"
* fk-constraint = "true"
* @return
*
public abstract FishLocal getFish();

Cascade delete will delete finger when the fish is
removed

* @ejb.relation name = "fish-fingers"

* role-name = "fingers from fish"

* cascade-delete = "yes"

* @jboss.relation related-pk-field = "id"

* fk-column = "fish_id"

* fk-constraint = "true"

* @return

Bed
Use local Interfaces

[
* @ejb.interface-method view-type = "local"
* @return
*/
public abstract ColourLocal getColour();

Jox
* @ejb.interface-method view-type = "local"

* @param name
/
public abstract void setColour(ColourLocal colour);
Relation is defined in the javaDoc of the getter. Put
target tags. Put a target multiple tag="yes”!

[

* @ejb.interface-method view-type = "local"

* @ejb.relation name = "bed-colour"

*_role-name = "bed has colour"

*_target-ejb = "Colour”

*_target-role-name = "colour of bed"
*_target-multiple = "yes"

* @return

*/

public abstract ColourLocal getColour();

*

Add the jboss tag.

Jox

* @ejb.interface-method view-type = "local"
* @ejb.relation name = "bed-colour"

* role-name = "bed has colour”

* target-ejb = "Colour"

* target-role-name = "colour of bed"

* target-multiple = "yes"

* @jboss.relation related-pk-field = "id"
* fk-column = "farb_id"

*_fk-constraint = "true"

* @return

*/

public abstract ColourLocal getColour();

No target-cascade delete here!!! Only possible
when the otherside is a 1-side not a many-side.

* @ejb.relation name = "bed-colour"

* role-name = "bed has colour"

* cascade-delete = "yes"

* target-ejb = "Colour"

* target-role-name = "colour of house"
* target-multiple = "yes"

Colo Leaf Tree
ur
Use local Interfaces

Jox
* @ejb.interface-method view-type = "local”
* @return
*/
public abstract Collection getLeafs();

Jox
* @ejb.interface-method view-type = "local"
* @param Leafs

*/
public abstract void setLeafs(Collection leafs);

Relation is defined in the javaDoc of the getter. Put target tags.

Put a target multiple tag="no”!

P
* @ejb.interface-method view-type = "local"
* @ejb.relation name = "tree-leafs"
* role-name = "tree has leafs"
* target-ejb = "Leaf"
* target-role-name = "leaf of tree"
* target-multiple = "no"
* @return
*/
public abstract Collection getLeafs();
Add the jboss tag.
Jox
* @ejb.interface-method view-type = "local"
* @ejb.relation name = "tree-leafs"
* role-name = "tree has leafs"
* target-ejb = "Leaf"
* target-role-name = "leaf of tree
* target-multiple = "no"
* @jboss.target-relation fk-column = "tree_id"

* fk-constraint = "true”

* related-pk-field = "id"

* @return

*/

public abstract Collection getLeafs();

No cascade delete here!l! Only possible when the otherside is a
1-side not a many-side. Use target-cascade-delete.

* @ejb.relation name = "tree-leafs"
* role-name = "tree has leafs"

* target-ejb = "Leaf"

* target-role-name = "leaf of tree "
* target-multiple = "no"

*

target-cascade-delete = "yes"

Testcode for adding a finger to the collection

FishLocalHome fishLocalHome = (FishLocalHome) context.lookup(FishLocalHome.JNDI_NAME);
FingerLocalHome fingerLocalHome= (FingerLocalHome)context.lookup(FingerLocalHome.JNDI_NAME);

FishLocal fishLocal = fishLocalHome.create();

FingerLocal fingerLocal = fingerLocalHome.create();

fishLocal.getFingers().add(fingerLocal);

Testcode for adding a bed to a Colour
InitialContext context = new InitialContext();

ColourLocalHome colourLocalHome = (ColourLocalHome)

context.lookup(ColourLocalHome.JNDI_NAME);

ColourLocal colourLocal = colourLocalHome.create();

BedLocalHome bed LocalHome = (BedLocalHome)
context.lookup(BedLocalHome.JNDI_NAME);
BedLocal bed = bed LocalHome.create();
bed.setColour(colourLocal);

Testcode for adding a Leaf to a Tree
InitialContext context = new InitialContext();

(TreeLocalHome.JNDI_NAME);

LeafLocalHome leafLocalHome = (LeafLocalHome) context.lookup

(LeafLocalHome.JNDI_NAME);
TreeLocal tree = treeLocalHome.create();
LeaflLocal blatt = leafLocalHome.create();
tree.getLeafs().add(blatt);

TreeLocalHome treeLocalHome = (TreeLocalHome) context.lookup

Relationship m:n (Get on both sides)

Relationship m:n (Unidirectional)

Pupil Teacher Question Idiots
Use local interfaces Use local interfaces Use local interfaces
Jox

[** I** * @ejb.interface-method view-type = "both”

* @ejb.interface-method view-type = "local" * @ejb.interface-method view-type = "local" * @return

* @return * @return Y

* * public abstract Collection getldiots();

public abstract Collection getTeachers(); public abstract Collection getPupils(); -

/** [** * @ejb.interface-method view-type = "both"

* @ejb.interface-method view-type = "local" * @ejb.interface-method view-type = "local" * @param idiots

* @param teacherlLocal Y/

*
public abstract void setTeachers(Collection teachers);

* @param pupil
*

public abstract void setPupils(Collection pupil);

public abstract void setldiots(Collection idiots);

Define in the javaDoc for the getter the relation with same
name on both sides and specify role-name

Jox

* @er mterface method view-type = "local"

belongs io teacher”
*/
public abstract Collection getTeachers();

Add the jboss.relation tag
e

* @ejb.interface-method view-type = "local"

* @ejb.relation name = "teacher-pupil" role-name = "pupil
belongs to teacher”

* @jboss.relation fk-column = "teacher_id"

* related-pk-field = "id"

* fk-constraint = "true"

* @return

*/

No cascade delete is possible! Entries in mapping table are
delete automatically.
Testcode

InitialContext context = new InitialContext();
TeacherLocalHome teacherLocalHome =
PupilLocalHome pupilLocalHome =
TeacherlLocal teacherLocal = teacherLocalHome.create();
PupilLocal pupilLocal = pupilLocalHome.create();
teacherLocal.getPupils().add(pupilLocal);

/o
* @ejb.interface-method view-type = "local"
* @ejb.relation name = "teacher-pupil” role-name =
"teacher has pupils”
/
public abstract Collection getPupils();

Add the jboss.relation tag
=

* @ejb.interface-method view-type = "local"
* @ejb.relation name = "teacher-pupil" role-name =
"teacher has pupils"

* @jboss.relation related-pk-field = "id"
*_fk-column = "pupil_id"
*_fk-constraint = "true"

* @return

*

No cascade delete is possible! Entries in mapping table are
delete automatically.

(TeacherLocalHome) context.lookup(TeacherLocalHome.JNDI_NAME);
(PupilLocalHome) context.lookup(PupilLocalHome.JNDI_NAME);

I
* @ejb mterface method view-type = "both"

role name = "question of idiot"
* target-role-name = "idiot has question"
* target-ejb = "Idiot"
* target-multiple = "yes"
* @return
*/
public abstract Collection getldiots();
Add the jboss.relation tag
Jox
* @ejb.interface-method view-type = "both"
* @ejb.relation name = "idiots-questions"
* role-name = "question of idiot"
* target-role-name = "idiot has question"
* target-ejb = "Idiot"
* target-multiple = "yes"
* @jboss.relation fk-column = "idiot_id"
* fk-constraint = "true"
*related-pk-field = "id"
* @jboss.target-relation fk-column = "question_id"
* fk-constraint = "true"
* related-pk-field = "id"
* @return
*/
public abstract Collection getldiots();

o
* @ejb.interface-method view-type = "both"
* @param idiots

*!

public abstract void setldiots(Collection idiots);
No cascade delete is possible! Entries in mapping table
are delete automatically.
Testcode

InitialContext context = new InitialContext();
IdiotLocalHome idiotLocalHome =

IdiotLocal idiotLocal = idiotLocalHome.create();
QuestionLocal questionLocal = questionLocalHome.create();
questionLocal.getldiots().add(idiotLocal);

(IdiotLocalHome) context.lookup(ldiotLocalHome.JNDI_NAME);
QuestionLocalHome questionLocalHome = (QuestionLocalHome) context.lookup(QuestionLocalHome.JNDI_NAME);

