
Relationship 1:1 (Get on both sides) Relationship 1:1 (Get on one side)
Tree Color Dog Bone
Use local interfaces

 /**
 * @ejb.interface-method view-type = "local"
 * @return
 */
 public abstract ColorLocal getColor();

 /**
 * @ejb.interface-method view-type = "local"
 *
 * @param colorLocal
 */
 public abstract void setColor(ColorLocal colorLocal);

 /**
 * @ejb.interface-method view-type = "local"
 * @return
 */
 public abstract TreeLocal getTree();

 /**
 * @ejb.interface-method view-type = "local"
 *
 * @param treeLocal
 */
 public abstract void setTree(TreeLocal treeLocal);

Use local interfaces

 /**
 * @ejb.interface-method view-type = "local"
 * @return
 */
 public abstract BoneLocal getBoneLocal();

 /**
 * @ejb.interface-method view-type = "local"
 * @param boneLocal
 */
 public abstract void setBoneLocal(BoneLocal
boneLocal);

Define in the javaDoc for the getter the relation with same
name on both sides and specify role-name
 /**
 * @ejb.interface-method view-type = "local"
 * @ejb.relation name = "tree-color"
 * role-name = "tree has color"
 * @return
 */
 public abstract ColorLocal getColor();

 /**
 * @ejb.interface-method view-type = "local"
 * @ejb.relation name = "tree-color"
 * role-name = "color of tree"

 * @return
 */
 public abstract TreeLocal getTree();

Define in the javaDoc for the getter the relation with
same name on one side only
 /**
 * @ejb.interface-method view-type = "local"
 * @ejb.relation name = "dog-bone"
 * role-name = "dog has bone"
 * target-ejb = "Bone"
 * target-role-name = "bone of dog"
 */
 public abstract BoneLocal getBoneLocal();

Add the jboss.relation tag only on one side
 /**
 * @ejb.interface-method view-type = "local"
 * @ejb.relation name = "tree-color"
 * role-name = "tree has color"
 * @jboss.relation related-pk-field = "id"
 * fk-column = "house_id"
 * fk-constraint = "true"

Add the jboss.relation tag only on one side
 /**
 * @ejb.interface-method view-type = "local"
 * @ejb.relation name = "tree-color"
 * role-name = "color of tree"
 * @jboss.relation related-pk-field = "id"
 * fk-column = "tree_id"
 * fk-constraint = "true"

Add the jboss.relation tag
 /**
 * @ejb.interface-method view-type = "local"
 * @ejb.relation name = "dog-bone"
 * role-name = "dog has bone"
 * target-ejb = "Bone"
 * target-role-name = "bone of dog"
 * @jboss.relation related-pk-field = "id"
 * fk-column = "bone_id"
 * fk-constraint = "true"

or the other way around
 /**
 * @ejb.interface-method view-type = "local"
 * @ejb.relation name = "dog-bone"
 * role-name = "dog has bone"
 * target-ejb = "Bone"
 * target-role-name = "bone of dog"
 * @jboss.target-relation related-pk-field = "id"
 * fk-column = "dog_id"
 * fk-constraint = "true"

Cascade delete will delete tree when color is removed

 * @ejb.relation name = "tree-color"
 * role-name = "tree has color"
* cascade-delete = "yes"

Cascade delete will delete color when tree is removed

* @ejb.relation name = "tree-color"
 * role-name = "color of tree"
* cascade-delete = "yes"

Cascade delete will delete dog when bone is removed
 * @ejb.relation name = "dog-bone"
 * role-name = "dog has bone"
 * cascade-delete = "yes"
 * target-ejb = "Bone"
 * target-role-name = "bone of dog"

Target cascade delete will delete the bone when the dog
is removed
 * @ejb.relation name = "dog-bone"
 * role-name = "dog has bone"
 * cascade-delete = "yes"
 * target-ejb = "Bone"
 * target-role-name = "bone of dog"
 * target-cascade-delete = "yes"

Relationship 1:n (Get on both sides) Relationship 1:n (Get only one the many-side) Relationship 1:n (Get only one the 1-side)
Fish Finger Bed Colo

ur
Leaf Tree

Use a Collection on the many side

 /**
 * @ejb.interface-method view-type = "local"
 * @return
 */
 public abstract Collection getFingers();

 /**
 * @ejb.interface-method view-type = "local"
 * @param fingers
 */
 public abstract void setFingers(Collection fingers);

Use local interfaces

 /**
 * @ejb.interface-method view-type = "local"
 * @return
 */
 public abstract FishLocal getFish();

 /**
 * @ejb.interface-method view-type = "local"
 * @param fishLocal
 */
 public abstract void setFish(FishLocal fishLocal);

Use local Interfaces

/**
 * @ejb.interface-method view-type = "local"
 * @return
 */
public abstract ColourLocal getColour();

/**
 * @ejb.interface-method view-type = "local"
 *
 * @param name
 */
public abstract void setColour(ColourLocal colour);

Use local Interfaces

/**
 * @ejb.interface-method view-type = "local"
 * @return
 */
 public abstract Collection getLeafs();

 /**
 * @ejb.interface-method view-type = "local"
 * @param Leafs
 */
 public abstract void setLeafs(Collection leafs);

Define in the javaDoc for the getter, the relation with
same name on both sides
 /**
 * @ejb.interface-method view-type = "local"
 * @ejb.relation name = "fish-fingers"
 * role-name = "fish becomes fingers"
 * @return
 */
 public abstract Collection getFingers();

Define in the javaDoc for the getter, the relation
with same name on both sides
 /**
 * @ejb.interface-method view-type = "local"
 * @ejb.relation name = "fish-fingers"
 * role-name = "fingers from fish"
 * @return
 */
 public abstract FishLocal getFish();

Relation is defined in the javaDoc of the getter. Put
target tags. Put a target multiple tag=”yes”!
/**
 * @ejb.interface-method view-type = "local"
 * @ejb.relation name = "bed-colour"
 * role-name = "bed has colour"
 * target-ejb = "Colour"
 * target-role-name = "colour of bed"
 * target-multiple = "yes"
 * @return
 */
public abstract ColourLocal getColour();

Relation is defined in the javaDoc of the getter. Put target tags.
Put a target multiple tag=”no”!

/**
 * @ejb.interface-method view-type = "local"
 * @ejb.relation name = "tree-leafs"
 * role-name = "tree has leafs"
 * target-ejb = "Leaf"
 * target-role-name = "leaf of tree"
 * target-multiple = "no"
 * @return
 */
 public abstract Collection getLeafs();

Add the jboss.relation tag on the many side!!!
Jboss target-relation is not working!
 /**
 * @ejb.interface-method view-type = "local"
 * @ejb.relation name = "fish-fingers"
 * role-name = "fingers from fish"
* @jboss.relation related-pk-field = "id"
* fk-column = "fish_id"
* fk-constraint = "true"
 * @return
 */
 public abstract FishLocal getFish();

Add the jboss tag.
/**
 * @ejb.interface-method view-type = "local"
 * @ejb.relation name = "bed-colour"
 * role-name = "bed has colour"
 * target-ejb = "Colour"
 * target-role-name = "colour of bed"
 * target-multiple = "yes"
 * @jboss.relation related-pk-field = "id"
 * fk-column = "farb_id"
 * fk-constraint = "true"
* @return
 */
public abstract ColourLocal getColour();

Add the jboss tag.
/**
 * @ejb.interface-method view-type = "local"
 * @ejb.relation name = "tree-leafs"
 * role-name = "tree has leafs"
 * target-ejb = "Leaf"
 * target-role-name = "leaf of tree"
 * target-multiple = "no"
 * @jboss.target-relation fk-column = "tree_id"
 * fk-constraint = "true"
 * related-pk-field = "id"
 * @return
 */
 public abstract Collection getLeafs();

No cascade delete here!!! Only possible when the
otherside is a 1-side not a many-side.

Cascade delete will delete finger when the fish is
removed
 * @ejb.relation name = "fish-fingers"
 * role-name = "fingers from fish"
 * cascade-delete = "yes"
 * @jboss.relation related-pk-field = "id"
 * fk-column = "fish_id"
 * fk-constraint = "true"
 * @return

No target-cascade delete here!!! Only possible
when the otherside is a 1-side not a many-side.

* @ejb.relation name = "bed-colour"
 * role-name = "bed has colour"
 * cascade-delete = "yes"
 * target-ejb = "Colour"
 * target-role-name = "colour of house"
 * target-multiple = "yes"

No cascade delete here!!! Only possible when the otherside is a
1-side not a many-side. Use target-cascade-delete.
 * @ejb.relation name = "tree-leafs"
 * role-name = "tree has leafs"
 * target-ejb = "Leaf"
 * target-role-name = "leaf of tree "
 * target-multiple = "no"
 * target-cascade-delete = "yes"

Testcode for adding a finger to the collection
FishLocalHome fishLocalHome = (FishLocalHome) context.lookup(FishLocalHome.JNDI_NAME);
FingerLocalHome fingerLocalHome= (FingerLocalHome)context.lookup(FingerLocalHome.JNDI_NAME);
FishLocal fishLocal = fishLocalHome.create();
FingerLocal fingerLocal = fingerLocalHome.create();
fishLocal.getFingers().add(fingerLocal);

Testcode for adding a bed to a Colour
InitialContext context = new InitialContext();
ColourLocalHome colourLocalHome = (ColourLocalHome)
context.lookup(ColourLocalHome.JNDI_NAME);
ColourLocal colourLocal = colourLocalHome.create();
BedLocalHome bed LocalHome = (BedLocalHome)
context.lookup(BedLocalHome.JNDI_NAME);
BedLocal bed = bed LocalHome.create();
bed.setColour(colourLocal);

Testcode for adding a Leaf to a Tree
InitialContext context = new InitialContext();
TreeLocalHome treeLocalHome = (TreeLocalHome) context.lookup
(TreeLocalHome.JNDI_NAME);
LeafLocalHome leafLocalHome = (LeafLocalHome) context.lookup
(LeafLocalHome.JNDI_NAME);
TreeLocal tree = treeLocalHome.create();
LeafLocal blatt = leafLocalHome.create();
tree.getLeafs().add(blatt);

Relationship m:n (Get on both sides) Relationship m:n (Unidirectional)
Pupil Teacher Question Idiots
Use local interfaces

 /**
 * @ejb.interface-method view-type = "local"
 * @return
 */
 public abstract Collection getTeachers();

 /**
 * @ejb.interface-method view-type = "local"
 * @param teacherLocal
 */
 public abstract void setTeachers(Collection teachers);

Use local interfaces

 /**
 * @ejb.interface-method view-type = "local"
 * @return
 */
 public abstract Collection getPupils();

 /**
 * @ejb.interface-method view-type = "local"
 * @param pupil
 */
 public abstract void setPupils(Collection pupil);

Use local interfaces
/**
 * @ejb.interface-method view-type = "both"
 * @return
 */
 public abstract Collection getIdiots();

 /**
 * @ejb.interface-method view-type = "both"
 * @param idiots
 */
 public abstract void setIdiots(Collection idiots);

Define in the javaDoc for the getter the relation with same
name on both sides and specify role-name
 /**
 * @ejb.interface-method view-type = "local"
 * @ejb.relation name = "teacher-pupil" role-name = "pupil
belongs to teacher"
 */
 public abstract Collection getTeachers();

 /**
 * @ejb.interface-method view-type = "local"
 * @ejb.relation name = "teacher-pupil" role-name =
"teacher has pupils"
 */
 public abstract Collection getPupils();

/**
 * @ejb.interface-method view-type = "both"
 * @ejb.relation name = "idiots-questions"
 * role-name = "question of idiot"
 * target-role-name = "idiot has question"
 * target-ejb = "Idiot"
 * target-multiple = "yes"
 * @return
 */
 public abstract Collection getIdiots();

Add the jboss.relation tag
 /**
 * @ejb.interface-method view-type = "local"
 * @ejb.relation name = "teacher-pupil" role-name = "pupil
belongs to teacher"
 * @jboss.relation fk-column = "teacher_id"
 * related-pk-field = "id"
 * fk-constraint = "true"
 * @return
 */

Add the jboss.relation tag
 /**
 * @ejb.interface-method view-type = "local"
 * @ejb.relation name = "teacher-pupil" role-name =
"teacher has pupils"
 *
 * @jboss.relation related-pk-field = "id"
 * fk-column = "pupil_id"
 * fk-constraint = "true"
 * @return
 */

Add the jboss.relation tag
/**
* @ejb.interface-method view-type = "both"
* @ejb.relation name = "idiots-questions"
* role-name = "question of idiot"
* target-role-name = "idiot has question"
* target-ejb = "Idiot"
* target-multiple = "yes"
* @jboss.relation fk-column = "idiot_id"
* fk-constraint = "true"
*related-pk-field = "id"
* @jboss.target-relation fk-column = "question_id"
* fk-constraint = "true"
* related-pk-field = "id"
* @return
*/
 public abstract Collection getIdiots();

 /**
* @ejb.interface-method view-type = "both"
* @param idiots
*/
 public abstract void setIdiots(Collection idiots);

No cascade delete is possible! Entries in mapping table are
delete automatically.

No cascade delete is possible! Entries in mapping table are
delete automatically.

No cascade delete is possible! Entries in mapping table
are delete automatically.

Testcode

InitialContext context = new InitialContext();
 TeacherLocalHome teacherLocalHome = (TeacherLocalHome) context.lookup(TeacherLocalHome.JNDI_NAME);
 PupilLocalHome pupilLocalHome = (PupilLocalHome) context.lookup(PupilLocalHome.JNDI_NAME);
 TeacherLocal teacherLocal = teacherLocalHome.create();
 PupilLocal pupilLocal = pupilLocalHome.create();
 teacherLocal.getPupils().add(pupilLocal);

Testcode

InitialContext context = new InitialContext();
IdiotLocalHome idiotLocalHome = (IdiotLocalHome) context.lookup(IdiotLocalHome.JNDI_NAME);
QuestionLocalHome questionLocalHome = (QuestionLocalHome) context.lookup(QuestionLocalHome.JNDI_NAME);
IdiotLocal idiotLocal = idiotLocalHome.create();
QuestionLocal questionLocal = questionLocalHome.create();
questionLocal.getIdiots().add(idiotLocal);

